The High Point Panthers (6-5) will clash against the Richmond Spiders (4-7) at St. Elizabeth’s East. The game is scheduled to start at 2:30 p.m. ET on Saturday, December 22, 2018.
High Point Panthers vs. Richmond Spiders Betting Odds
Both teams fell in their last contest. The Spiders fell to the Longwood Lancers, 63-58, while the Panthers were defeated by the William & Mary Tribe, 79-69.
High Point had a better turnover percentage (16.0 vs. 18.7) while Richmond had a much better turnover percentage (17.3 vs. 25.7). Jacob Gilyard played a pivotal role for Richmond with 15 points, six steals and five assists. High Point, meanwhile, was led by Brandonn Kamga, who contributed 24 points, six rebounds and five steals.
Grant Golden and Nick Sherod have played at a high level over the last five games for Richmond. Golden has averaged 0 points, while Sherod has recorded 0 points a game during that span.
Half-court execution will be of utmost importance when two of the country’s slowest-paced teams go head-to-head. Richmond ranks 294th in possessions per game (67.5) and High Point is 318th (66.0).
High Point Panthers vs. Richmond Spiders ATS Pick
Prediction: SU Winner – Richmond, O/U – Under
Betting Notes:
- Richmond ranks 118th in three pointers attempted per game (23.1) while High Point ranks 260th (17.2).
- The Spiders average 8.3 steals per game, which ranks 32nd in the nation. The Panthers rank 66th in steals allowed per game (4.7).
- Richmond ranks 44th in assists allowed per game (11.2) while High Point ranks 59th (13.1).
- The Spiders rank 35th in blocks allowed per game (2.6) while the Panthers rank 140th (4.1).
- High Point ranks 50th in rebounds allowed per game (32.1) while Richmond ranks 131st (35.1).
Bettings Trends:
- The Spiders’ average margin of victory in their last five games has been 1.4, up from 0.7 for the season.
- During their last five games, the Panthers have scored an average of 63.4 points per game (5.6 below their season average) and allowed an average of 66.6 points per game (2.9 below their season average).